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ABSTRACT

The purpose of this investigation was to determine the feasibility
of measuring bubble size distributions acoustically. The experiment
consisted of a comparison of a rhotographically and an acoustically
determined bubble size distribution of an electrolytically generated
bubble screen. The approximate range of bubble radii considered was
from 15p to 85u. Results indicate the acoustic method may be reasonably
accurate in determining a relative bubble size distribution for spherical
bubbles with radii greater than 32p, but more information is needed about
the damping constants of nonresonant bubbles; and a more precise evalua-
tion of an integral in the acoustical theory is needed before the validity
of the acoustical method can be established.
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This investigation was made from 12 July to 24 September 1965 under
the U. S. Navy Mine Defense Laboratory In~House Independent Research
Program, Subproject SR 011 01 01, Task 0401, Subtask 11, authorized by
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1, The purpose of this investigation was to determine the feasibility
of measuring bubble size distributions acoustically, so that bubble
distributions naturally occurring in the sea could be measured and
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INTRODUCTION

During World War II the theory of sound transmission in the sea,
especially bubble theory and the effects of bubbles on underwater sound,
was studied and vastly improved. This was brought about primarily in
an effort tc solve the many problems concerning ship cavitation and,
more generally, those concerning the wakes of ships. Since that time,
this theory has been extended by Carstensen and Foldy (Reference 1).
Their work disclosed that bubble distributions greatly affected sound
transmission; therefore, a need arose for a method to analyze these
rnistributions in the sea.

This report presents the results of an experiment made to discover
whether the theory, and its resulting approximations, could be used to
determine acoustically the size distribution of bubbles in a continuous-
flow bubble screen.,

Acoustic waves, such as those used in sonar, are very much affected
upon entering water containing bubbles. The waves are scattered,
refracted, reflected, and absorbed by the bubbles more than by the water
itself, even if only a small percentage of the volume encountered is
composed of bubbles. The amount of scattering, reflection, and absorp-
tion is highly dependent, however, on the frequency of the incident
sound weve., Sound of some frequencies may undergo almost complete
extinction, whereas that of other frequencies is hardly affected while
passing through the same bubbly medium. This phenomenon can be explained
easily if the equations of motion of the bubbles are analyzed. All
bubbles act as small spherical oscillators, capable of expansion and
contraction, each bubble having a fundamental resonant frequency of
oscillation dependent primarily on its size. The acoustic wave may be
considered as the driving Iorce for the bubbles, with each bubble obeying
the laws of forced harmonic motion, If the wave frequency is near the
resonant bubble frequency, the bubble is highly excited, and the sound
wave undergoes extensive scattering and absorption, If the incident
wave has a frequency far from the resonant bubble frequency, however,
it will pass the bubble virtually unaffected.

By employing a relationshis between resonant bubble frequency and
bubble radius, coupled with a relationship between sound attenuation
and the number of resonant bubbles present, one should be able to derive
the actual size distribution o. the bubbles, but this has not been




established experimentally., By varying the frequency of the incident
sound and measuring the attenuation in this experiment, data were
gathered for these relationships. 7The results were compared with a
later determination of a similar distribution established photographi-
cally, using empirical curves for rate of bubble rise as a function of
bubble radius. 1In the photographic method, a picture of the bubble
screen was taken with a one-half second exposure and later extensively
analyzed. The lengths of the bubble traces were measured and, using
the rate of rise of air bubbles in water as a function of their radii,
a bubble size distribution was determined, The relatively close agree-~
ment observed between photographic and acoustic results indicates that
the theory of sound in a fluid medium containing bubbles (Reference 1)
is adequate to correlate the two sets of data after more information
concerning the damping constants of nonresonant bubbles is obtained.

ACOUSTIC DETERMINATION OF BUBBLE SIZE DISTRIBUTION

THEORY

As early as 1933, Minnaert (Reference 2) established the relation-
ship between the radius of an air bubble in water (R) and its resonant
frequency (f) as

1
f= SR v/3vP/p (1)

where P is the hydrostatic pressure, p is the fluid density and vy is the
ratio of specific heats of the air in the bubble; or, in a more usable
form,

fR = 330 (2)

where £ is in cps, R in cm, and P is atmospheric pressure. This equation
is valid for a single bubble over the range of bubble sizes considered

in the investigation. According to Reference 3, surface tension may not
be neglected for bubble radii smaller than 10w (micron) and Equation 1
must be modified for these smaller bubbles. This resonant frequency
corresponds to the fundame:utal mode of vibration of the bubble, and for
practical purpnses the harmonic modes may be neglected.

If one begins with the wave equation in a fluid medium and applies
the boundary conditions for an actual bubble, as carried out in Refer-
ence 3, the following equation is obtained for the extinction cross
section ror the bubble,
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f “ 2
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Here, R is the bubble radius; f is the resonant frequency of the bubble,
f is the frequency of the incident sound; T is the ratio of the bubble
circumference to the wavelength of the incident sound in the fluid; and

§ has become known as the '"damping constant" (not to be confused with

the classical damping constant). This extinction cross section o,
represents the sum of the scattering and absorption cross sections of

the bubble. Physically, the sound energy flowing through an area o,
perpendicular to the incident sound beam is equal to the total energy
absorbed and scattered by the bubble.

When considering a nonhomogeneous size distribution of bubbles
such that N(R)dR is the number of bubbles per cubic centimeter with
radii betwecen R and R + dR, the total extinction cross section per
cubic centimeter, S, can be obtained from Hquation 3 by integrating
overall radii:

; ; (3
_ _ 4nR® N(R)\TI
5. = | o, n@aR = | paet dr
o o (?5 - 1) + 62

(4)

To evaluate this integral exactly, &, which is a function of radius and
frequency, must be known completely. However, § is known only for
resonant size bubbles, and thus this integral can be evaluated only by
making approximations.,

If one assumes that only resonant bubbles contribute appreciably
to S, and that N(R) does not change rapidly for radii near resonance,
then S, can be evaluated approximately as (Reference 3)

2 53
Se = 2‘” Rl‘ N(Rl‘) (S)
0,
where R, and 1), are the resonant values of R and T).

The attenuation by a bubble screen (in db) of sound of frequency
f, denoted by K., is proportional to S, and thus
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K, = ¢ R N(R.) ‘ (6)

¢
where C, is a constant. Thus, if one measures the attenuation of sound
through a bubble screen for a given frequency f, then the approximate
number of bubbles with radius R, is given by:

K
VR, = G 7

Thus a relative number distribution is obtained, because the attenuation
at each frequency, when properly weighted, should be proportional to the
number of resonant size bubbles present for that particular frequency.
If the frequency is varied over the entire range of resonant radii, a
complete "spectrum' of bubble sizes and numbers should be obtained.

EXPERIMENT

Tu'= experiment was performed in a large concrete tank, measuring
4 m by 50 m and £filled with tap water to a depth of 1 m. A bubble
screen was generated electrolytically, using a l-m length of No, 12
tinned copper wire as the cathode with a large copper anode positioned
about 10 m away. The wire was placed near the bottom of the tank so as
to produce a bubble screen measuring l-m wide, 1-m high, and with a
thickness varying from the wire diameter at the bottom of the tank to
about 10 cm at the surface (see Figure 1). This varying thickness is
caused by the greater diffusion of the smaller bubbles due to their
slower rate of rise. A current of 135 ma was supplied to the electrodes
by a 10-volt tap from a 12-volt automotive-type battery. This current
changed less than *3 ma during both the acoustical and photographic
measurements,

For the acoustical attenuation measurements, the bubble screen was
placed midway between, and perpendicular to a line joining, two trans-
ducers (see Figure 1), A BM-102 projector and a M-146 hydrophone were
positioned facing each other, 60 cm apart, and 46 cm from the bottom of
the tank, For the frequencies considered here this separation con-
stituted far-field conditions for the transducers and individual bubbles,
but not for the entire bubble screen. The instrumentation used is
described in Appendix A.

In the actual experiment a single-frequency continuous-wave signal
was projected with no bubble screen, and a voltage level (in db, refer-
ence 1 volt) proportional to the received sound pressure level was
recorded. This measurement /as repeated for frequencies from 20 k¢ to
110 ke in 5-kc increments, and from 110 kc to 210 ke in 10-kc increments.
This procedure was repeated with the bubble screen in place. The
attenuation of the sound through the bubble screen is then defined to

(Text continued on page 8)
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be the difference in db between these two sets of data. At no
frequency did a recorded level vary more than 1 db, using the high
damping mode of the meter. Wall echoes were eliminated by placing

the transducers in such a way that the echoes were directed down the
length of the tank; the returning.signal, having been reflected many
times, had a negligible level. Surface and bottom reflections were
eliminated in the received signal by the directivity of the transducers.

The measured acoustic attenuation through the bubble screen is
plotted in Figure 2, As a check, this entire procedure was repeated
on a different day and the deviation was less than 1 db at all points.
The data point at 35p (95 kc) was not recorded due to distortion caused
by one of the transducers.

PHOTOGRAPHIC DETERMINATION OF BUBBLE SIZE DISTRIBUTION

The acoustic methol of determining bubble size distributions,
although fast and ccnvenient, relies on approximations which have not
been verified under the conditions considered here. To validate the
acoustic approach a photographic technique to determine the bubble size
distribution was employed.

The basis of the photographic approach chosen is a measured curve
describing the rate of rise of hubbles in a fluid as a function of
bubble radius taken from Reference 1., This curve is plotted in Figure 3
(Curve 1). Also plotted in this figure are other curves representing
variations in position of the curve, as noted in Figure 3. It can be seen
there is close agreement between the line which best correlates acoustic
and photographic peaks and the line determined by Carstensen and Foldy
(Reference 1).

In the experiment the cathode wire was placed about 10 cm from a
plate-glass window in the side of the tank so that the pictures could
be taker through the window. A black cloth backdrop was placed about
20 cm behind the bubble screen; lighting was provided by two 500-watt
photo-flood lamps positioned just above the surface of the water and
approximately over each end of the cathode wire.

A Speed Graphic camera with a shutter speed of 0.5 sec was used
with an f-stop of 18. This f-stop was chosen because it was found to
give the bect depth of field with sufficient contrast, A metric scale
was positioned in the bubble screen and appreared at one side of the
photograph for calibration. The 4-inch by 5-inch negative (Ansco Super
Hy-Pan Film Pack, ASA rating of 500) was enlarged to an 8-inch by 10-inch
print, providing an overall magnification of 1.,2. The camera was located
at the same vertical position as the center of the transducers.

(Text continued on page 11)
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For the size range of bubbles considered, 11y to 85u, the 0.5-scc
shutter speed constitutes a time exposure, resulting in bubble traces
ranging in length from 0.6 mm to 8 mm, A total of 5000 bubble traces
were analyzed and tabulated with a 4X comparator. These bubbles were
all of the visible bubbles in an area of 138 cm® on the photographic
print. Of the 5000 bubbles analyzed, less than 20 were greater than
85p; about 1000 were smaller than 1lp and were not used in this investi-
gation because their size could not be determined accurately. A bubble
size distribution calculated from the bubble count data and from Curve 3
of Figure 3 is shown plotted as a dashed curve in Figures 4 through 7.
This particular rate-of-rise curve was chosen because it provides the
best fit between the two experimental distribution curves; and, within
the evperimental error involved in measuring this curve, it agrees with
the curve by Carstensen and Foldy,

ANALYSTS CF RESULTS

Four different comparisons are made between the acoustically and
photographically determined curves in Figures 4 through 7. The photo-
graphic curves (dashed curves) are the same in all figures, whereas each
of the four acoustic curves correspond to a different integral value of
the power to which R is raised in Equation 7. This was done because
of the uncertainty introduced by the approximations involved in obtaining
Equation 7 from Equation 4, and is essentially a test of the validity
of these approximations, The curve in Figure 2 corresponds to the zero
power relation in which a distribution simply proportional to the
attenuation is assumed. The solid curve in Figure 4 corresponds tec the
inverse first power; in Figure 5 it corresponds to the inverse second
power, in Figure 6 to the inverse third power, and in Figure 7 to the
inverse fourth power., Of these five curves, the inverse third power
relation, shown in Figure 6, was shown by regression analysis to provide
the best fit; it aiso is the one predicted by the approximated theory.

A regression analysis of these four curves for the range of radii from
32y to 75p shows, however, that the inverse third power curve is only
2 percent better than the inverse second power curve,

The range of best fit of the radius parameter in these curves is
from 32y to 60u. For radii greater than 60y the numbers of bubbles
counted for each radius increment is less than 39, and the statistics
are no longer as meaningful., For radii less than approximately 32u,
Figure 6 shows that the acoustic and photographic curves no longer agree.
This disagreement has been attributed to various phcnomena affecting the
acoustic properties of the bubble:

(Text continued on page 16)
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1, Due to surface tension and acoustic dissipation by heat
conduction between the gas and liquid and by viscous friction of the
liquid taking part in the oscillation, the acoustic theory given
previously is not valid for radii less than about 30p. Reference 4
gives this limit as 50p and References 3 and 5 as 32u. The present
investigation agrees with the 32 limit,

2, Due to "anomalous" bubbles (Reference 5), caused by dust
particles adhering to the bubble surface, the functional relation-
ship between attenuation and bubble size may be affected. The
percentage of these bubbles, as compared to the total number of
bubbles present, increases with decreasing radii, Below 30p there
is evidence to indicate that a majority of the bubbles are of this
anomalous type (Reference 5).

Also, due to the inverse third power relationship assumed in the
conversion of attenuation to size distribution, increasingly larger
numbers of bubbles are required to produce significant attenuation
as one considers decreasingly smaller radii, In this investigation
the measured attenuations, for bubbles less than 20y in radius, were
less than 1 db. Since the measurement of such small attenuations
exceeds the precision capabilities of the acoustic instrumentation,
it also provides a likely source for some of the disagreement observed
in the curves,

It is unfortunate that the bubble size distribution generated in
this experiment apparently peaked below 30u.

It is to be noted that the ordinate scale for the photographic
curves in Figures 4 through 7 is the actual number of bubbles counted
in a 96-~cm® area of the bubble screen, whereas the ordinate scales
for the acoustic curves are arbitrary and represent the relavive
number of bubbles of the various sizes rather than the absolute values.

SUMMARY AND CONCLUSIONS

By comparison of photographically and acoustically determined
bubble size distributions, this investigation has attempted to verify
that by acoustically measuring atten.ation as a function of frequency,

a reasonably accurate relative bubble size distribution can be determined.

For a heterogeneous mixture of bubbles with radii between 32y and 85y,

corresponding to resonant ficquencies from 39 kc to 110 ke, rather crude
agreement in shape was found., To obtain an absolute bubble size distri-

bution acoustically, more information is needed about the ''damping
constant' for nonresonant bubbles. A better fit between the acoustical

16



and photographic curves possibly could be obtained if the integration
involved in the acoustical method could be done by numerical techniques,
thus avoiding the errors introduced by approximating the solution of

this integral as an expression inversely proportional to the third powcr
of the radius.

(Reverse page 18 blank)
17/



APPENDIX A

INSTRUMENTATION

The block diagram of the acoustic instrumentation used in this
experiment is shown in Figure Al, The equipment used may be further
described as follows:

|
|

e

1. Test Oscillator: Hewlett~-Packard Model 650A

=

2. Frequency Counter: Hewlett-Packard Model 5238

£

3. Power Amplifier: McIniosh Model Mc6€0

4, Preamplifier: Tektronix Model 1121

= et o B

5. Voltmeter: Ballantine Model 801-58 (High Damping Mode).
Not shown in the diagram, but also used were:
1. Oscilloscope: Tektronix Model 555

2. Amplifier: Keithly Model 102B~R (in series with counter).

19
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